集計や分析、予測の結果をダッシュボードやレポートなどとして、データ活用する現場に提供することがあります。 どのようなダッシュボードやレポートを作ればいいのか? そう悩む人も多いことでしょう。 今回は、「データサイエンスレ...
データサイエンス系プロジェクトを成功裏に納めるためには、人の成長やチーム構成なども重要ですが、連携も重要です(当たり前といえば、当たり前ですが……)。 そこで、どう育成するのか、どうチーム構成するのか、ではなく、チームが...
異常とは、標準的な挙動から著しく逸脱した稀なデータのことである。 時系列の多くの異常値は、ある特定の時点における顕著なスパイクや、ある特定の期間だけ傾向が大きく異なるとかです。 そして、異常データの多くは、どのデータが異...
ビジネスの現場で登場するデータの多くは時系列データですが、通常のテーブルデータと同様に欠測値や外れ値なども、当然ながら発生します。 時系列データの一部に欠測値(データがない)がある場合、どうすればいいでしょうか。 テーブ...
売上などの時系列データには、周期性があります。 周期性の中で、期間の決まっているものを季節性と言ったりします。 例えば、1日単位の売上データであれば、週周期(7日間)や年周期(365.25日間)などです。 例えば、1時間...
AI(人工知能)って何だろうと考えたとき、定義は非常に難しいですが、、、 感覚的に思いつくことの1つとして、「何かを教えてくれるコンピュータ上の何か」といのもあるのではないでしょうか? 何かを教えてくれるぐらいですから、...
ビジネスの現場で目にする多くのデータは時系列データです。例えば、売上やセンサーデータなどです。 さらに、ビジネスの現場で目にする多くの時系列データは、階層構造を持っています。例えば、売上全体とエリアごとの売上、そのエリア...
今も昔も実施されているデータ活用の1つが、ABテストです。データサイエンティストなどが関わることも多いです。 ただ、データサイエンティストがA/Bテストを行う方法は近年大きく変化しています。 従来は、手作業で行うものが多...
DXやAI、機械学習、データサイエンスというキーワードとともに、企業で実施されるようになったものの1つに、PoC(Proof of Concept、概念実証)というものがあります。 PoC(Proof of Concep...
収穫逓減とは、例えば「農業において、一定面積からの一人当たりの収穫が、労働力の追加的投下によってしだいに減少する」という現象を表現したものです。 要は、労働投入量の増大に比例せず、追加労働1単位の収穫量は逓減していく、と...