ビジネスの現場で登場するデータの多くは時系列データですが、通常のテーブルデータと同様に欠測値や外れ値なども、当然ながら発生します。 時系列データの一部に欠測値(データがない)がある場合、どうすればいいでしょうか。 テーブ...
売上などの時系列データには、周期性があります。 周期性の中で、期間の決まっているものを季節性と言ったりします。 例えば、1日単位の売上データであれば、週周期(7日間)や年周期(365.25日間)などです。 例えば、1時間...
AI(人工知能)って何だろうと考えたとき、定義は非常に難しいですが、、、 感覚的に思いつくことの1つとして、「何かを教えてくれるコンピュータ上の何か」といのもあるのではないでしょうか? 何かを教えてくれるぐらいですから、...
ビジネスの現場で目にする多くのデータは時系列データです。例えば、売上やセンサーデータなどです。 さらに、ビジネスの現場で目にする多くの時系列データは、階層構造を持っています。例えば、売上全体とエリアごとの売上、そのエリア...
今も昔も実施されているデータ活用の1つが、ABテストです。データサイエンティストなどが関わることも多いです。 ただ、データサイエンティストがA/Bテストを行う方法は近年大きく変化しています。 従来は、手作業で行うものが多...
DXやAI、機械学習、データサイエンスというキーワードとともに、企業で実施されるようになったものの1つに、PoC(Proof of Concept、概念実証)というものがあります。 PoC(Proof of Concep...
収穫逓減とは、例えば「農業において、一定面積からの一人当たりの収穫が、労働力の追加的投下によってしだいに減少する」という現象を表現したものです。 要は、労働投入量の増大に比例せず、追加労働1単位の収穫量は逓減していく、と...
時系列(time series)データと混同されやすいデータがあります。 点過程(point process)データです。 点過程時系列データと呼ぶこともあり、通常の時系列データと混同されることも多々あります。 そもそも...
IT化を進めれば、その副産物としてデータは発生します。 そのデータを保存さえしていれば、その副産物としてのデータを分析し、何かに活用することができます。 ただ、データを副産物として扱う限り、データは活用しにくい状態で保存...
自社の業績を知るには、単に売上高や市場シェアなど分析すればいいでしょう。 未来の業績を知るには、過去データをもとに時系列予測モデルを構築し予測するという手もありますが、顧客の声を反映し、もう少し構造的に検討してもいいかも...