Screenshot

【月1特定テーマ講座(9月)】
Python で学ぶ 機械学習を使った
「ビジネス因果推論」超入門

【開催日時】 全2回 9/6,9/20 (土) 13:30-17:00
【受講形式】 当日Zoom( or 復習用に後日動画視聴)
【参加費用】 2万2千円(税込み)/人
Screenshot

【月1特定テーマ講座(10月)】
Python で学ぶ 明日 からできる
「MMM(マーケティング・ミックス・モデリング)」超入門

【開催日時】 全2回 10/4, 10/18 (土) 13:30-17:00
【受講形式】 当日Zoom( or 復習用に後日動画視聴)
【参加費用】 2万2千円(税込み)/人
Screenshot

【Python無料基礎講座(9月)】
はじめての人でも分かる
Pandasで学ぶ 基礎集計とクロス集計

【開催日時】 2025年9月27日(土)(13:30〜18:00)
【受講形式】 当日Zoom( or 復習用に後日動画視聴)
【参加費用】 無料
Screenshot

【個人向け養成講座(10月スタート)】
企業事例でガッツリ学ぶ
「Python ビジネス時系列データ分析」入門コース

【開催日時】 全5日(土)2025/10/11,10/25,11/8,11/22,12/6(13:30〜18:00)
【受講形式】 当日Zoom( or 復習用に後日動画視聴)
【参加費用】 8万8千円円(税抜き)/人

RECENT ARTICLES

第276話|ちょっとした営業部隊コスパ指標

第276話|ちょっとした営業部隊コスパ指標

販売高の最大化を目指し、営業部隊の成果を指標化することは、よくあります。 販売高の最大化のキーとなるのが、コスパのいい営業でしょう。 販売高そのもの以外で、いくつかの指標があります。 個々の営業パーソンや、営業所や部、課...
第274話|視座の高低と将来予測

第274話|視座の高低と将来予測

高い塔に登って見渡せば、遠くまで見渡せます。低い椅子の上から見渡せば、遠くまで見渡せません。 低い椅子の上から下を見れば、足元(この場合、椅子の足元)は見えます。高い塔に登って下を見れば、その足元はよく見えません。 高い...
Pythonで時系列解析・超入門(その3)<br><br>ARIMA系モデルで予測する方法

Pythonで時系列解析・超入門(その3)

ARIMA系モデルで予測する方法

ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
Pythonで時系列解析・超入門(その2)<br><br>指数平滑化法(Exponential Smoothing model)で予測する方法

Pythonで時系列解析・超入門(その2)

指数平滑化法(Exponential Smoothing model)で予測する方法

ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
Pythonで時系列解析・超入門(その1)<br><br>時系列データに対する3つの特徴把握方法<br>(変動成分・定常性・コレログラム)

Pythonで時系列解析・超入門(その1)

時系列データに対する3つの特徴把握方法
(変動成分・定常性・コレログラム)

ビジネスの世界で発生するデータの多くは、時間的概念の紐付いた時系列データです。 例えば、売上金額や受注件数、販売量、生産量、在庫量、PV(ページビュー)数、見込み顧客数、既存顧客数、離反顧客数、故障件数、広告宣伝費、人件...
Python Keras(TensorFlow)で作る<br> 深層学習(Deep Learning)時系列予測モデル(その1)<br><br>RNNで1期先予測(1-Step ahead prediction)

Python Keras(TensorFlow)で作る
深層学習(Deep Learning)時系列予測モデル(その1)

RNNで1期先予測(1-Step ahead prediction)

時系列の深層学習(ディープラーニング)モデルの代表格がRNN(Recurrent Neural Network、リカレントニューラルネットワーク)です。 他には、RNNの長期記憶を保存できないなどの問題点を改善する形で登...