データを使って何かを予測する、データを使って答えを導き出す、それが最適なものであると最高です。 しかし、多くの場合、データを上手く活用することで、「答えの方向性」は導いてくれます。しかし、データをいくら集め上手く活用して...
国土交通省の建設工事受注動態統計の書き換え問題、すごいですね。 国交省 不適切な統計処理 推計で8年間に34兆円余 過大に計上 日本の大手製造業でもデータ改竄問題が、定期的にニュースに上がってきています。 偽装に不具合、...
データは非常に強力です。わかりやすく、有無を言わさない破壊力があります。 ただ、おかしな使い方や見せ方で、人を騙すこともできます。恐ろしいことです。 たびたび目にするのが、0か1かのベルヌイ試行的なものです。 株価が上が...
数字で表現するメリットは計り知れませんが、デメリットもあります。 一人歩きし誤った方向に誘導してしまうこともある、というデメリットです。 どの数字をどう見せるかで、向かう方向を誘導することができます。 恐ろしいことです。...
ビジネスの現場でデータ活用するには、現場の事情を知る必要もあるし、現場に寄り添わなければなりません。 ただ、データサイエンスの基礎的な部分が疎かなデータ分析者やデータサイエンティスト、機械学習エンジニアだと、現場に寄り添...
上手くいったものを横展開すると上手くいく、というのは、時と場合によっては幻想かもしれません。 少なくても、データ活用のケースでは、幻想であることが少なからずあります。 ある企業で上手くいったことをやったら上手くいかず……...
たまに、「折角だからこのデータを使って!」的なことがあります。 そのデータを溜めるまでに多大なる労力を要したのか、データ整備に多大なる時間を要したのか、ITシステム周りでコストが掛かったのか、何かは知りませんが、特定のデ...
データ活用を考えたとき、先ずはデータ活用する「現場のお困りごと」を考えるべきです。 しかし、「データのお困りごと」から入ってしまうケースが多々あります。 「データのお困りごと」とは、データが足りない、データが汚い、データ...
集計や分析、予測の結果をダッシュボードやレポートなどとして、データ活用する現場に提供することがあります。 どのようなダッシュボードやレポートを作ればいいのか? そう悩む人も多いことでしょう。 今回は、「データサイエンスレ...
データサイエンス系プロジェクトを成功裏に納めるためには、人の成長やチーム構成なども重要ですが、連携も重要です(当たり前といえば、当たり前ですが……)。 そこで、どう育成するのか、どうチーム構成するのか、ではなく、チームが...